Fiber Optic Accelerometer S. Swierkowski, J. Trevino, G. Jacobson, C. McConaghy, A. Throop, C. L. Lee Miniature accelerometers are broadly useful instrumentation sensors for mechanical systems. Weapons testing needs very small, preferably passive, accelerometers. We have built a 200-g accelerometer, with a footprint of just 4.5 mm x 7 mm, using a fiber optic interferometer readout of proof mass position. ost commercial devices are large and have electrical power and signal readout; often this is a small signal and the electrical wiring is a hazard in explosive environments. We have built a 3.5-kHz resonant frequency, 200-g MEMS sensor, using bulk wafer RIE machining, and epoxy packaging. A wafer yield is about 100 parts. The proof mass moves laterally and forms the moving mirror of a Fabry-Perot cavity. The fixed mirror is provided by an optical fiber that is packaged into the 150-µm-square groove in a 400-µm-thick wafer, shown on the right in Fig. 1. Figure 2 shows the silicon part, epoxy bonded between two glass plates. The heart of any accelerometer is the proof mass and spring combination (Fig. 3); the resonant frequency determines the bandwidth and the sensitivity of the accelerometer. By adjusting the tether spring thickness a few micrometers with processing, the response of this **Figure 1.** Key component: the silicon proof mass, with 2 of 4 tethers, 1 mm long, in the frame shown. device can be tuned from about 10~g to 1000~g. Initial testing shows the DC response to be 37~nm/g with $23-\mu m$ tethers. A more robust fusion bonded package is desirable for temperature range and stability. **Figure 2.** Silicon part, epoxy bonded between two glass plases, with a multimode optical fiber, to complete the 200-q, 4.5-mm-x-7-mm MEMS accelerometer sensor. **Figure 3.** Silicon proof mass mirror, RIE etched sidewall, smooth enough for the white light interferometer and multimode fiber readout.